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ABSTRACT: In early 2018, due in part to a severe and extended meteorological drought, Cape Town was at risk of being
one of the first major metropolitan areas in the world to run out of water. The magnitude of the crisis was exacerbated by
the fact that such a prolonged and severe drought was both unanticipated and unpredicted. In this work, we analyze data
from both observations and seasonal forecasts made as part of the North American Multimodel Ensemble (NMME) to
better understand the predictability of rainfall in the Cape Town (CT) region. We find that there are statistically significant
correlations between observed CT rainfall and sea surface temperatures in the tropical Atlantic (;0.45) as well as a pattern
of 200-mb geopotential height (z200) anomalies resembling the Southern Annular Mode (SAM; ;0.4). Examination of
hindcasts from the NMME demonstrates that the models accurately reproduce the observed correlation between CT rain-
fall and z200 anomalies. However, they fail to reproduce correlations between CT rainfall and the tropical South Atlantic.
Decomposition of the correlations into contributions from predictable and unpredictable components indicates that CT
rainfall in the models is dominated by unpredicted atmospheric variability (correlation; 0.84) relative to predicted (corre-
lation; 0.14), which may be related to the failure to simulate the connection with the tropical Atlantic.

SIGNIFICANCE STATEMENT: Water crises are occurring with increasing severity and frequency around the globe.
The ability to accurately forecast wet season rainfall would be invaluable to water managers and other decision-makers.
Here, we explore the reasons behind the failure of a suite of operational seasonal forecast models to accurately predict
rainfall in the Cape Town region of South Africa.
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1. Introduction

The city of Cape Town (population ; 3.7 million) is situ-
ated in the Western Cape region of South Africa. Cape Town
(CT) receives most of its rainfall during the months of April–
September and is relatively dry the rest of the year. In early
2018, due in part to a severe and extended meteorological
drought, Cape Town was at risk of being one of the first major
metropolitan areas in the world to run out of water. The mag-
nitude of the crisis was exacerbated by the fact that such a
prolonged and severe drought was both unanticipated and un-
predicted (Joubert and Ziervogel 2019).

CT rainfall exhibits considerable interannual variability, as
well as a tendency toward prolonged dry periods, and is sup-
plied primarily by cold fronts associated with extratropical cy-
clones and occasional cut-off lows. These systems bring
rainfall onto land as part of the climatological northward shift
of the Southern Ocean storm track during austral winter
(Reason and Rouault 2005; Blamey and Reason 2007). The
interannual variability of CT rainfall is associated with a num-
ber of slowly varying climate features that might be expected
to provide enhanced predictability on seasonal time scales,

such as sea surface temperatures (SSTs) in the South Atlantic
(Reason et al. 2002; Reason and Jagadheesha 2005), sea ice
anomalies in the Atlantic sector of the Southern Ocean
(Blamey and Reason 2007), El Niño–Southern Oscillation
(ENSO; Ropelewski and Halpert 1987; Reason et al. 2002;
Mulenga et al. 2003; Colberg et al. 2004; Rouault et al. 2010;
Philippon et al. 2012), and the Southern Annular Mode
(SAM; Reason et al. 2002; Philippon et al. 2012; Mahlalela
et al. 2019), as well as Hadley cell expansion and storm-track
displacement (Sousa et al. 2018; Burls et al. 2019).

Previous research has shown that CT austral winter rainfall
is positively correlated with ENSO, a source of potential pre-
dictability on seasonal time scales. This correlation may arise
through a variety of potential links. Previous studies have
shown rainfall variability in the CT is influenced by SST gra-
dients in the South Atlantic and south Indian basins, the vari-
ability of which has been linked to ENSO (Colberg et al.
2004; Philippon et al. 2012). The systems that bring rain to the
region are also deeper, larger, and located farther north dur-
ing El Niño, whereas these systems are thinner, smaller, and
located farther south during La Niña (Philippon et al. 2012).
Rouault et al. (2010) found a negative correlation between
CT rainfall anomalies and SST anomalies in the South Atlantic
that could be linked to wind speed changes during ENSO events.
The atmospheric dynamic fields during the time of wet spells
over this region feature lower pressure and northwesterly wind
anomalies during El Niño, as well as higher pressure and south-
erly wind anomalies during La Niña (Philippon et al. 2012).
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Other proposed mechanisms through which El Niño events
give rise to dry winters include alterations in the local Walker
circulation and SST in the tropical Indian and Atlantic
Oceans. During an El Niño event, the convergence zone of
cloud bands that are usually the source of high CT rainfall
moves offshore (Tyson and Preston-Whyte 2000). The south
Indian convergence zone (SICZ) flow moves northeastward
and prevails over the Indian Ocean, causing dry conditions over
South Africa (Mulenga et al. 2003; Blamey and Reason 2012).

In addition to ENSO, the SAM has also been shown to
have a large influence on tropospheric circulation variability
in the Southern Hemisphere (Hartmann and Lo 1998;
Thompson and Wallace 2000; Reason and Rouault 2005;
Abram et al. 2014). The positive phase of the SAM has been
shown to favor dry conditions over Cape Town, while the neg-
ative phase favors wet conditions. The importance of under-
standing relationships between the SAM and the regional
winter climate is underscored by the recent shift in the SAM
toward a more positive phase, which has contributed to the
observed long-term southward shift of the midlatitude wester-
lies and drier winters over much of the Southern Hemisphere
(Seager et al. 2003, 2019; Fogt and Bromwich 2006; Pohl et al.
2010; L’Heureux and Thompson 2006).

The systematic change in the rainfall associated with cold
fronts appears to be linked to the expansion of the Hadley
cell across the Southern Hemisphere and an increasing trend
in postfrontal high pressure conditions that suppress oro-
graphically enhanced rainfall (Burls et al. 2019). The circula-
tion has expanded the most poleward during summer and fall
in both hemispheres (Grise et al. 2018). Observational evi-
dence shows that the expanding Hadley circulation pushes
subtropical dry regions farther poleward in both hemispheres,
enacting dry spells (Seidel et al. 2008; Davis and Rosenlof
2012; Birner et al. 2014; Lucas et al. 2014).

In this work, we further explore and understand the predict-
ability of rainfall in the CT region by analyzing the individual
models and ensemble members available from the North Ameri-
can Multimodel Ensemble (NMME; Kirtman et al. 2014). We
find that, while the NMME can reproduce the patterns of rainfall
and 200-mb height anomalies associated with CT rainfall vari-
ability, those patterns are dominated by unpredicted variability.
We also find that the models fail to reproduce observed correla-
tions between CT rainfall and tropical South Atlantic SSTs,
which may be a contributing factor in the lack of predictability.

2. Data and methodology

a. Data

We analyze a subset of the NMME hindcasts initialized
1 March and integrated through September of that same year
at a minimum and whose output data of predicted SST, pre-
cipitation, and 200-mb geopotential height (z200) have been
made available through the International Research Institute
data library (see Table 1) for the April–September (AMJJAS)
1982–2009 hindcast period.

In addition to the NMME, we analyze data from the CPC
Merged Analysis of Precipitation (CMAP; Xie and Arkin 1997),

the Extended Reconstructed Sea Surface Temperature, version 4
(ERSST.v4), product (Huang et al. 2015), 200-mb geopotential
height data from the Modern-Era Retrospective Analysis for
Research and Applications, version 2 (MERRA-2), product
(Gelaro et al. 2017), and a station-based precipitation time series
for the CT reservoir catchment basin (see Burls et al. 2019).

b. Methodology

Our analysis follows the approach described in Cash and
Burls (2019) in leveraging the large number of individual en-
semble members in the NMME to assess the relative impor-
tance of predicted and unpredicted climate variations in CT
rainfall. For each model and ensemble member, we decom-
pose model fields into two components, for example,

SSTA
ij 5 SSTE

ij 1 SSTN
ij , (1)

where SSTA
ij is the total SST field (minus the grand mean such

that the average over all seasons and members is 0 for season
i and ensemble member j), SSTE

i is the ensemble mean for
season i, and SSTN

ij is the deviation of a given ensemble mem-
ber j for a given season i from the ensemble mean. In the case
where the ensemble mean is calculated for a single model,
SSTE

i is the component of SST that is common to all ensemble
members and thus is relatively insensitive to small changes in
initial conditions. In the case where the ensemble mean is cal-
culated over multiple models [multimodel ensemble mean
(MMEM)], it is also the component that is not overly sensitive
to differences in model formulation.

Following the nomenclature used in Cash and Burls (2019),
we refer to SSTE

i as the predicted or forced component. SSTN
ij

in turn represents the component of the simulated field that is
sensitive to initial conditions and/or model formulation and is
referred to as the unpredicted component (or sometimes sim-
ply noise). Note that both the predicted and unpredicted com-
ponents are defined for each model (or collection of models)
and variable separately and are thus explicitly both model
and variable dependent.

Using this decomposition, we can assess the contribution
from the different components to the total correlation. For ex-
ample, the Pearson’s correlation between SST and CT rainfall
can be written as

rA 5
∑(SSTE 1 SSTN)(CTE 1 CTN)��������������

∑(SSTA)2
√ �������������

∑(CTA)2
√ , (2)

which can be further rewritten as

rA 5
∑(SSTECTE 1 SSTNCTN)��������������

∑(SSTA)2
√ �������������

∑(CTA)2
√ ’

∑SSTECTE

��������������
∑(SSTA)2

√ �������������
∑(CTA)2

√

1
∑SSTNCTN

��������������
∑(SSTA)2

√ �������������
∑(CTA)2

√ : (3)

Here, we have dropped the ensemble/noise cross terms as
their contribution to the total is negligible. The first term on
the right-hand side of Eq. (3), denoted here as rAE, represents
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the contribution to the total rA from the ensemble-mean
terms E (hence, AE), while the second term, denoted rAN,
is the contribution from the noise terms N (hence, AN). Note
that the denominator of each term is the same and depends
on the variance of SSTA and CTA.

We can also calculate the correlation of the ensemble mean
or noise terms separately, for example,

rE 5
∑SSTECTE

��������������
∑(SSTE)2

√ �������������
∑(CTE)2

√ ,

rN 5
∑SSTNCTN

��������������
∑(SSTN)2

√ �������������
∑(CTN)2

√ : (4)

These correlations emphasize the relationships between fea-
tures within the ensemble mean and noise, respectively, as op-
posed to the contribution of the ensemble mean and noise to
the total. It is important to note that rAE Þ rE, rAN Þ rN, and

rA Þ rE 1 rN, due to the differences in the denominators.
The impact of this change in the denominator can be substan-
tial (see Figs. 2e,f and associated discussion below).

All reported correlations are tested for statistical signifi-
cance using a two-tailed t test at the 95% confidence level.
Since significance is a function of the degrees of freedom, and
the total data used to calculate each correlation coefficient
vary with the component considered, the numerical value for
significance varies widely across calculations. The observa-
tional period chosen consists of 28 years of data (1982–2009),
corresponding to the hindcast period of the NMME. In con-
trast, the NMME subset analyzed consists of the same 28-yr
subset, but also includes eight models with a total of 95 ensemble
members for a total of 2660 years. Analysis of the model ensem-
ble means results in one 28-yr time series per model for a total
of 224 years. For 28 years, magnitudes above 0.375 are signifi-
cant at the 95% level using a two-tailed t test. For 224 years,
magnitudes above 0.13 are significant at the 95% level. For

TABLE 1. NMME models included in this study. Most acronym expansions are available at http://www.ametsoc.org/PubsAcronymList.
Other expansions include Forecast-Oriented Low Ocean Resolution Model using parameter set B (FLORB), Forecast-Oriented Low
Ocean Resolution Model using parameter set A (FLORA), Canadian Meteorological Centre (CMC), CCCma’s fourth-generation ocean
model, level 40 (CanOM4L40), Rosenstiel School of Marine and Atmospheric Sciences (RSMAS), and Parallel Ocean Program (POP),
level 42 (POPL42).

Model
Hindcast
Period

Ensemble
size

Forecast
lead

(months)

Native
atmosphere
resolution

Native ocean
resolution Reference

NCEP-CFSv2 1982–2010 24 0–9 TI26L64 MOM4L40, 0.258/28 km Eq Saha et al. (2014)
GFDL-CM2p5 FLORB01 1982–2010 12 0–11 CI8L32 (50 km) MOM4L50, 0.38/33 km Eq Vecchi et al. (2014)
GFDL-CM2p5 FLORA06 1982–2010 12 0–11 CI8L32 (50 km) MOM4L50, 0.38/33 km Eq Vecchi et al. (2014)
CMC1-CanCM3 1982–2010 10 0–11 T63L31 CanOM4L40, 0.948/104 km Eq Merryfield et al. (2013)
CMC2-CanCM4 1982–2010 10 0–11 T63L315 CanOM4L40, 0.948/104 km Eq Merryfield et al. (2013)
NCAR-CCSM3

(COLA-RSMAS)
1982–2010 6 0–11 T85L26 POPL42, 0.38/33 km Eq Kirtman and Min (2009)

NCAR-CCSM4
(COLA-RSMAS)

1982–2010 10 0–11 0.98 3 1.258, L26 POPL60, 0.258/28 km Eq Infanti and Kirtman
(2017)

NASA-GMAO-062012 1982–2010 11 0–11 18 3 1.258, L72 MOM4L40, 0.258/28 km Eq Vernieres et al. (2012)

FIG. 1. One-point correlation map of CMAP CT rainfall index with global CMAP rainfall for 1982–2009 during AMJJAS.
Values with magnitudes above 0.375 are significant at the 95% level as determined by a two-tailed t test.
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2660 years, any value displayed is statistically significantly
different from zero, if not necessarily physically significant.

3. Results

We first consider the patterns of rainfall associated with
Cape Town rainfall variability by constructing a rainfall index
centered on the Western Cape region (defined as 358–338S,
188–208E) using the CMAP data and correlating it with rain-
fall at every other point in the CMAP dataset. Correlations
are relatively high in the immediate vicinity of Cape Town
(see Fig. 1 inset) by construction, with lower values distri-
buted noisily across the globe and generally below the
95% confidence level outside of the region surrounding Cape
Town. As previous work has shown that results can be quite

sensitive to the choice of observed rainfall product (Cash et al.
2015), we repeat the global correlation map calculation using
a composite Cape Town station rainfall time series (see Burls
et al. 2019) in place of the CMAP time series. When we recal-
culate the one-point correlation pattern (Fig. 2a), we find that
the maximum correlation values of the Cape Town station
data and CMAP are only 0.52 in the immediate vicinity of
Cape Town. Given the relatively coarse resolution of the
CMAP gridded data (2.58 3 2.58) and the sharp geographic
variations in rainfall characteristics in the Western Cape re-
gion (Landman et al. 2001), the station time series from
Burls et al. (2019) is used to represent CT rainfall for the re-
mainder of this work.

Compared to the observed correlation pattern, the noisiness
of the total model correlation pattern (rA; Fig. 2b) between

FIG. 2. One-point correlation map decomposition for CT rainfall index and global rainfall for 1982–2009 during AMJJAS. (a) Observed
correlation for CT station index (Burls et al. 2019) and CMAP global rainfall. (b) Total correlation (ra) for NMME model in Table 1.
(c) Contribution of ensemble mean (rAE) to total correlation ra. (d) Contribution of noise component (rAN) to total correlation ra.
(e) One-point correlation map for ensemble-mean precipitation only. (f) One-point correlation map for noise component rainfall only.
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simulated Cape Town index rainfall variability and rainfall at ev-
ery other point is significantly reduced and includes only rela-
tively weak centers of action outside of the CT region. Recalling
that 95 times more data are used in Fig. 2b than in Fig. 2a, the re-
duction in noisiness is an expected result. Further decomposing
the model correlation (rAE; rAN; Fig. 2d) shows that almost all
of the overall correlation pattern (Fig. 2b) is due to the noise
component. This is consistent with previous work showing that
the prediction skill of winter season rainfall is generally low over

the CT region (Landman et al. 2001), as well as the specific ob-
servation that the day zero drought was not well anticipated
(Joubert and Ziervogel 2019).

Analyzing the ensemble mean (rE) in isolation presents a
very different picture of the role of the predictable compo-
nent (cf. Figs. 2c,e). The reduced variance in the denominator
[see Eq. (3)] leads to much higher magnitudes overall for
rE relative to rAE. The noise-only component (rN; Fig. 2f) is
relatively unchanged from Fig. 2d, reflecting its dominant

FIG. 3. Total correlation (ra) CT and global rainfall for individual models in Table 1. See panel title for individual model plotted. The
precise value significant at the 95% level varies with the number of ensemble members, but in general, values above 0.15 can be consid-
ered significant.
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contribution to rA. Analyzing the ensemble-mean component
in isolation thus acts to exaggerate its influence (e.g., Cash
and Burls 2019), although it also has been argued that this is
necessary to counter the tendency of climate models to pro-
duce too much internal variability and overemphasize the role
of noise (e.g., Scaife and Smith 2018). It is thus important to
note that Fig. 2 does not necessarily mean that CT rainfall is
unpredictable in nature, merely that variability in the selected
NMME models is dominated by unpredicted variations.

In addition to the differences between observations and
simulation, Figs. 2a and 2b include vastly different amounts of
data, due to the use of multiple models and multiple ensemble
members in Fig. 2b. To assess the impact of the increased
data available to the MME, as well as potential sensitivities to
model formulation, we also calculate the point correlation be-
tween global and CT rainfall separately for each model
(Fig. 3). By construction, each model shows the same high
positive correlation in the CT region as the observations
(Fig. 2a) and MME (Fig. 2b). However, the correlations now
show a much greater magnitude outside of the CT region, with
significant intermodel variability. For example, depending on

the model chosen, it is possible to find statistically significant
swaths of positive (Fig. 3c) or negative (Fig. 3a) correlation
with the tropical Pacific. These differences arise despite each
panel still including data from multiple ensemble members.
The observed correlation patterns in Fig. 2a, along with the in-
dividual model patterns in Fig. 3, should thus all be interpreted
with a certain amount of caution and an awareness of the im-
pacts of sampling variability.

Based on previous analyses of CT rainfall variability (e.g.,
Reason et al. 2002), we expect to find a strong association
with local circulation anomalies. Correlating observed CT
rainfall and z200 (Fig. 4a), we find a pattern that closely re-
sembles the negative phase of the SAM. Increased CT rainfall
is associated with positive z200 anomalies over Antarctica and
a zonally elongated region of negative anomalies across the
midlatitudes, including a center of strong negative correla-
tions located SW of the CT region. It is worth noting the asso-
ciation with centers near Chile and Australia, regions that
have also experienced severe drought in recent decades.

We find that the observed correlations between CT rainfall
and z200 are reasonably well reproduced in the NMME (see

FIG. 4. As in Fig. 2, but for correlations between CT rainfall and 200-mb heights.
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Fig. 4b). The region of observed positive correlations over the
Antarctic (Fig. 4a) is clearly identifiable, as are the negative
correlations stretching across the Pacific from Australia to
South America. As with the local rainfall correlation patterns,
the model 200-mb height pattern is dominated by the noise
component (cf. Figs. 4c,d). Thus, while the models accurately
represent the link between z200 and rainfall, they are unable
to predict the relevant 200-mb height anomalies on seasonal
time scales. Analyzing the predictable component in isolation
(Fig. 4e) shows that it is associated with a tropics-wide de-
crease in 200-mb heights and a stronger center of negative
correlations to the immediate south of Cape Town.

Given the apparent impact of z200 variability on CT rain-
fall, particularly the center to the immediate southwest of the
Cape Town region, we repeat the correlation analysis de-
scribed above using a z200 index (defined as 398–348S,
68–118E) that characterizes that center in place of the CT rain-
fall. Correlating this index with z200 globally, in the observa-
tions (Fig. 5a), we see the expected strong, positive correlations
in the region that defines the index. We also find positive

correlations across the tropics, indicating that positive z200
anomalies in the CT region are, at least in part, associated with
an increase in heights across the tropics. Such an increase
would be consistent with an association with El Niño condi-
tions and previous research showing dry conditions (recall that
CT rainfall is negatively correlated with the z200 center) typi-
cally occur in Cape Town during El Niño events. We also re-
cover the expected (now negative) correlations over the
Antarctic region associated with the SAM signal.

Comparing the model total z200 correlation pattern
(Fig. 5b) to the observations (Fig. 5a), we find they are re-
markably similar, even down to the center of positive correla-
tions off the southern tip of South America. In contrast to the
analysis of z200 and rainfall (Fig. 4), here we find a significant
contribution from the predictable component of the simula-
tions (cf. Figs. 5d,b). The predictable component is associated
with positive correlations across the entirety of the tropics, re-
sembling a combination consistent with the summer response
to the positive phase of ENSO (see Kumar and Hoerling
2003) and with previous work demonstrating that the

FIG. 5. Correlation decomposition for 200-mb height index centered southwest of the CT region and global 200-mb height field. Panels are
as in Figs. 2 and 4. Note the close similarity between (a) and (b).
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predictable component of the NMME is dominated by the
ENSO response (Cash and Burls 2019). The noise component
(Fig. 5e) is more locally confined and contributes most of the
amplitude over the pole. Interestingly, the center near the
southern tip of South America and the critical center south-
west of Cape Town are both superpositions of predictable
and unpredictable components of the simulation.

We further investigate the potential contributors to the
predictable component of the z200 anomaly, including the
implied link to ENSO, by calculating the correlation decom-
position for our 200-mb height index and SST (Fig. 6) The ob-
servations (Fig. 6a) show a pattern of positive correlations
across the tropical Pacific that resemble the decaying positive
phase of ENSO [e.g., see Kumar and Hoerling (2003), Fig. 5],
consistent with Fig. 5a. We also find positive correlations in
the western Indian Ocean, and negative correlations across
the eastern Indian Ocean, a pattern that closely resembles the
Indian Ocean dipole mode (Saji et al. 1999) and much of the
South Atlantic. Most notably, while the model pattern resem-
bles the observations in the eastern tropical Pacific and the

Southern Ocean, the regions of negative correlation in the
South Atlantic and eastern Indian Ocean are absent in the
simulations.

In contrast to the correlation between CT rainfall and
200-mb heights, we find that the global z200–SST correlation
pattern (Fig. 6b) is dominated by the predictable component
(Fig. 6c). The noise component (Fig. 6d) consists mostly of a
center in the tropical South Atlantic that is opposite in sign to
the observations (cf. Fig. 6a). The absence of the strong nega-
tive correlation between the 200-mb height index and the
South Atlantic is common to all models examined in this work
(see Fig. 7). The negative correlation with the eastern Indian
Ocean is also generally absent, although not as completely (see
Fig. 7d).

Finally, we return to analysis of the direct association
between CT rainfall and SST (Fig. 8). In contrast to the cor-
relation between CT precipitation and global precipitation
(Fig. 2), but consistent with the association between the
z200 center and SST (Figs. 6 and 7), the association between
CT rainfall and SST differs significantly between the models

FIG. 6. As in Fig. 5, but for correlation between z200 index and SST. Panels are as in Figs. 2, 4, and 5. Note the discrepancy between (a) and (b)
in the South Atlantic.
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and observations (cf. Figs. 8a,b). Model correlations in the
South Atlantic are weaker than observed and are also oppo-
site in sign (Figs. 8a,b). The total correlation is dominated
by the noise term (cf. Figs. 8c,d), consistent with the domi-
nant role of noise in the precipitation patterns (see Fig. 2).
Correlations with the tropical Pacific are drastically reduced
relative to Fig. 6, although there is a similar pattern when
the predictable component is considered in isolation
(Fig. 8e). Similarly, the observed South Atlantic pattern can
be seen when the predictable component is considered in
isolation (Fig. 8e). However, the magnitudes in the Atlantic

are small and not statistically significant such that the noise
signal dominates over all (Fig. 8b).

Further exploring the relationship between CT rainfall and
the remote ocean basins, we find that the observed winter cor-
relation shows a region of positive correlation of ;0.5 in the
South Atlantic (Fig. 8a). This is broadly consistent with previ-
ous analyses of the relationship between CT region rainfall
and the South Atlantic (Blamey and Reason 2007). The
Blamey and Reason (2007) analysis used different datasets,
analysis periods, and methodologies to arrive at a similar re-
sult, indicating this is a relatively robust relationship. We also

FIG. 7. Correlation between z200 index and SST for individual models.
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find a positive correlation with the eastern tropical Pacific in
the observations, although the values are not significantly dif-
ferent from zero.

4. Summary and conclusions

Accurate predictions of seasonal rainfall are both a scien-
tific Grand Challenge1 and of tremendous practical impor-
tance. The severity of the Cape Town “day zero” water crisis
was in part attributable to the fact that it was both unantici-
pated and unpredicted (Joubert and Ziervogel 2019). In this
work, we analyze the variability and predictability of Cape
Town winter rainfall in both models and observations. Consis-
tent with the previous studies discussed in the introduction,
we find that variations in Cape Town winter rainfall are asso-
ciated with changes in circulation across the globe. Our results
show that increased winter rainfall is associated with increases
in local rainfall and with SST in the South Atlantic, eastern

Pacific, and western Indian Oceans. We also find associations
with negative SST anomalies in the eastern Indian Ocean, as
well as with the negative phase of the Southern Annular
Mode. The fact that rainfall variations are associated with
these global-scale patterns of variability raises the possibility
that Cape Town winter rainfall is potentially more predictable
than the current state of the art would suggest.

In addition to the observations, in this work we also analyze
data from a subset of dynamical models from the NMME. We
find that the models are able to reproduce some, but not all,
of the observed relationships. In particular, the correlation be-
tween Cape Town and global rainfall, as well as Cape Town
rainfall 200-mb heights, closely matches what is observed, but
the observed correlations between rainfall and SST are not
well captured. This discrepancy is particularly notable in the
South Atlantic, where the observed correlations are positive,
and the model correlations are negative. This indicates that,
while the models are correctly identifying the state of the at-
mosphere that results in increased rainfall, they are failing to
correctly link that atmospheric state and global SST. This hy-
pothesis is further supported by decomposing the model

FIG. 8. As in Figs. 2, 4, 5, and 6, but for correlation between CT rainfall and SST.

1 https://www.noaa.gov/sites/default/files/2022-01/PPGC-Strategy_
FINAL_2020-1030.pdf.
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correlations into predictable and unpredictable components,
which shows that the unpredictable components dominate the
model correlations in almost all cases. Thus, even in the case
of the high-fidelity reproduction of the observed 200-mb
height relationship with rainfall, we find the models have little
skill in predicting its occurrence on seasonal time scales.

One possible explanation for this domination by the noise
component is simply that Cape Town rainfall is driven by cha-
otic atmospheric variability on seasonal time scales and is fun-
damentally unpredictable. However, it should also be noted
that our previous work (Burls et al. 2019) has shown that the
recent trend in rainfall days in the Cape Town region is asso-
ciated with a decrease in the number of rainy days associated
with the passage of winter cold fronts. Given the relatively
coarse resolution of the models in the NMME, and their focus
on seasonal predictability, it is likely that these much smaller-
scale interactions are not represented well. In addition, the
complex and abrupt changes in topography of the Western
Cape cannot be captured at NMME resolutions. The use of
high-resolution, convection-allowing or convection-permitting
models thus might improve the representation of seasonal
Western Cape (WC) rainfall. However, at this point, the com-
putational cost of such models remains prohibitive for large
seasonal ensembles and thus any potential improvement re-
mains speculative.

The fact that the models fail to capture the much larger-
scale relationship between Cape Town rainfall and global SST
suggests that SST biases, particularly in the Atlantic, may be
preventing models from realizing the potential predictability
associated with these more slowly varying components of the
climate system. Coupled climate models suffer from signifi-
cant biases in the tropical and subtropical South Atlantic [see
Counillon et al. (2021) and references therein]. Previous anal-
yses (e.g., Gimeno et al. 2012) have shown that this region of
the Atlantic and the nearby regions of the Southern Ocean
are the primary source of winter moisture for the Cape Town
region (see their Fig. 11). It is thus entirely consistent with
these previous studies that systematic errors in South Atlantic
SST should lead to systematic errors in WC rainfall. That this
is, in fact, a systemic issue in the models is further demon-
strated by the fact that none of the eight models analyzed in
this work are able to reproduce the observed associations
with Atlantic SST. The fact that the models do not recover
the observed global relationships between Cape Town rainfall
and Atlantic SST suggests that reducing or eliminating these
biases represents a potential mechanism for improving sea-
sonal predictions of Cape Town rainfall.
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